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Electronic effect on the regioselectivity in the ring opening of
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Abstract—The electronic effect on the regioselectivity in the alkynylation of phenyloxiranes was investigated using three kinds of
metal acetylides. BF3 mediated lithium acetylide provided either the a- or b-alkynylated products by controlling the effect of the
para-substituents of the phenyloxiranes. LiClO4 mediated lithium acetylide and titanium acetylide, on the other hand, afforded pre-
dominantly the b- and a-products, respectively.
� 2004 Elsevier Ltd. All rights reserved.
The alkynylation of oxiranes via ring opening with me-
tal acetylides is an important carbon–carbon forming
reaction.1 However, this useful reaction suffers from
some intrinsic limitations, including low yields and reg-
ioselectivity. Recently, several new methods have been
suggested in order to solve these issues. Lithium acety-
lides in the presence of BF3ÆOEt2 by Yamaguchi and
Hirao,2 titanium acetylides by Krause and Seebach,3 tri-
methylgallium catalyzed lithium acetylides by Matsub-
ara and co-workers,4 and lithium acetylides in the
presence of LiClO4 by Crotti and co-workers5 all afford
better yields than the classical methods. While simple
alkyloxiranes are usually attacked at the less hindered
position, the regioselectivity of aryloxiranes depends
on a balance between the steric and resonance effects
at the benzylic carbon. The procedures described above
differ in their regiochemical control: whereas the ring
opening of phenyloxirane by BF3 or Me3Ga mediated
lithium acetylides provides mixtures of the a- and b-
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Scheme 1.
alkynylated products, the use of titanium acetylides
leads only to the a-alkynylated products, and LiClO4 as-
sisted ring opening by lithium acetylides predominantly
affords b-alkynylated products. The regioselectivity also
seems to depend on a balance between the nucleophilic-
ity of the acetylides and the Lewis acidity of the metal.
Although the metal effect of acetylides has been exten-
sively studied, systematic studies on the sensitivity of
the regioselectivity to the influence of the substituents
on the aromatic ring of the aryloxiranes have not been
reported as far as we know.6 We report herein the elec-
tronic effect on the regioselectivity in the alkynylation of
para-substituted phenyloxiranes.

The above mentioned lithium acetylide with BF3ÆOEt2
(2a), lithium acetylide with LiClO4 (2b) and titanium
acetylides (2c) were used as metal acetylides (Scheme
1). Table 1 shows the results of the alkynylation of
para-substituted phenyloxiranes with 2a.7 The ratios of
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Table 1. Alkynylation of p-X-phenyloxiranes 1 by lithium acetylide in

the presence of BF3ÆOEt2 (2a)
a

Entry X Time 3:4 Yieldb (%)

1 NO2 5h 1:>99 85

2 CO2Me 3h 28:72 79

3 Cl 1h 58:42 90

4 H 10min 68:32 81

5 Me 10min 93:7 85

6 OMe 10min >99:1 49

a All reactions were carried out with 1:lithium acetylide:BF3ÆOEt2
(1:3:3) at �78�C in THF.

b Isolated yields.
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the a- and b-alkynylated products 4/3 in the reactions of
the phenyloxiranes with electron withdrawing groups
are higher than that of the unsubstituted one (entries
1–4). When a nitro group was the substituent, the b-
alkynylated product 4 was produced exclusively in 5h
(entry 1). On the other hand, substrates with an electron
donating group afforded mainly the a-alkynylated prod-
ucts 3 within 10min (entries 5 and 6), clearly demon-
strating that the electron withdrawing substituents
retard the reaction. Plots of DDG� (DGz

b � DGz
a (kJ/

mol)) versus the r+ values from the Hammett equation8

gave a straight line, indicating the dramatic electronic ef-
fect (Fig. 1).
Figure 1. Plots of r+ value versus DDG� for alkynylation of para-

substituted phenyloxiranes with 2a.

Table 2. Alkynylation of p-X-phenyloxiranes 1 by lithium acetylide in the p

X 2ba

Entry Time (h) 3:4 Yieldc (%)

NO2 1 10 1:>99 44d

H 2 36 3:97 85

OMe 3 20 25:75 35e

a Reactions were carried out with 1:lithium acetylide:LiClO4 = 1:3:2 at room
bReactions were carried out with 1:titanium acetylide = 1:2 at �50�C then w
c Isolated yield.
d The byproduct 11 was isolated in 12% yield.
e The byproduct 11 was isolated in 27% yield.
f The chlorinated product 9 was formed in ca. 30% yield.
It is noteworthy that the reaction of the optically active
p-methoxyphenyloxirane 1 (X = OMe, 93% ee)9 with
lithium trimethylsilylacetylide/BF3ÆOEt2 gave the almost
racemic a-alkynylated product 6 (6% ee), while the reac-
tion of the unsubstituted phenyloxirane 1 (X = H, 90%
ee)9 furnished the a-alkynylated product 710 without
any loss of optical purity, along with the b-alkynylated
one 8 (Scheme 2).

In contrast, the LiClO4 mediated lithium acetylide 2b,
which is much less reactive than 2a, furnished mainly
the b-alkynylated products 4 (Table 2, entries 1–3),11

even in the reaction of p-methoxyphenyloxirane (1,
X = OMe), along with 27% of the side product 11, which
would be formed by the Meinwald rearrangement,12

followed by addition of the acetylide to the resulting
aldehyde 10. However p-nitrophenyloxirane provided
exclusively 4 in moderate yield along with 12% of 11
(Scheme 3). The titanium acetylide 2c afforded only
the a-alkynylated products 3 (entries 5 and 6),13

although p-nitrophenyloxirane did not give the alkynyl-
ated products, but rather 2-chloro-1-(4-nitrophenyl)eth-
anol (9) was obtained in 30% yield (entry 4).
From these results, among the acetylide species, the BF3

mediated lithium acetylide 2a was found to be the most
sensitive to the influence of the electronic effect of the
para-substituents in terms of the a/b selectivity. This
species can afford either the a- or b-alkynylated prod-
ucts by simply changing the para-substituent of phenyl-
oxirane, while the LiClO4–lithium acetylides and
titanium acetylides provide the b- and a-alkynylated
products, respectively.

The mechanism of the regioselectivity depends on a bal-
ance between the nucleophilicity and the Lewis acidity.
Since the lithium acetylide would not be converted into
the boron acetylide at �78 �C,14 BF3, it would function
as a relatively strong Lewis acid, and, thus, efficiently
activate both the Ca–O and the Cb–O bonds of the oxir-
anes (Fig. 2, 14). Since electron donating para-substitu-
ents stabilize the a-carbocation via resonance, the Ca–O
resence of LiClO4 (2b) and by titanium acetylide (2c)

2cb

Entry Time (h) 3:4 Yieldc (%)

4 48 — 0f

5 10 >99:1 78

6 1 >99:1 82

temperature in THF.

armed to room temperature over 2h and stirred for indicated hours.



Scheme 2.

Scheme 3.
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bond would be more activated and elongated than the
Cb–O bond, and the nucleophile would selectively attack
the a-site (15) via the SN1 like mechanism. However,
since electron withdrawing substituents deactivate the
a-site, b-attack via SN2 is relatively favored, although
the reaction is retarded (13). The linear relationship be-
tween r+ and the regioselectivity indicates that increas-
ing carbocation character of the a-site tends to
increase a-attack. LiClO4 is a much weaker Lewis acid
than BF3, and thus, the oxiranes are only slightly acti-
vated (12).15 However, since this species still has nucleo-
philicity as high as lithium acetylide, only the b-
alkynylated products were obtained due to the steric ef-
fect, and the resonance effect does not contribute to the
selectivity. Since the reaction was carried out at room
Figure 2. Activation of oxiranes by Lewis acids.
temperature, the Meinwald rearrangement competed
with the a-alkynylation.

In contrast, the triisopropoxy titanium acetylide would
have moderate Lewis acidity and very poor nucleophilic-
ity. The generation of the benzylic carbocation by coor-
dination of the oxirane to titanium is crucial for the
reaction of titanium acetylide, and thus p-nitrophenyl-
oxirane did not provide alkynylated products, but gave
the chlorinated product (9) instead.16

In conclusion, we have demonstrated the electronic ef-
fect on the alkynylation of aryloxiranes by metal acety-
lides. The BF3 mediated lithium acetylide is very
sensitive to the effect, and the selectivity is controlled
by the para-substituents. LiClO4 mediated lithium acety-
lide and titanium acetylides are much less sensitive to the
effect in terms of the regioselectivity, and afford the b-
and a-alkynylated products, respectively. This is the first
systematic study on the electronic effect in alkynylation,
which should be useful for organic chemists, since the
products are synthetically very important.
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